III B. TECH II SEMESTER REGULAR EXAMINATIONS APRIL - 2023 DEEP LEARNING

(CSE – ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING)

Time: 3 hours

Max. Marks: 70

Note: Answer ONE question from each unit (5 × 14 = 70 Marks)

UNIT-I

1.	a)	Give an example of learning XOR function to describe a fully functioning feed forward network.	[7M]
	b)	What is an activation function and why to use them.	[7M]
		(OR)	
2.	a)	Compare fed forward and fed backward networks.	[7M]
	b)	Why convergence is not guaranteed for back propagation algorithm.	[7M]
		UNIT-II	
3.	a)	Describe the ill- conditioning problem in neural network optimization.	[7M]
	b)	Discuss the advantages of L1 regularization over L2 regularization.	[7M]
		(OR)	
4.	a)	Illustrate the RMSProp algorithm.	[7M]
	b)	Why do we need better optimization algorithm? Illustrate AdaGrad optimization strategy.	[7M]
		UNIT-III	
5.	a)	Illustrate the operation of pooling layer in CNN with simple example.	[7M]
	b)	Differentiate artificial neural networks and convolutional neural networks.	[7M]
		(OR)	
6.	a)	Draw the architectures of AlexNet, VGGnet and single ResNet block.	[7M]
	b)	What does bias do in deep learning? How the weights and bias are updated in neural network?	[7M]
		UNIT-IV	
7.	a)	How early stopping acts as a regularizer.	[7M]
	b)	What is dropout and why is it used? Discuss the benefits of dropout in deep neural networks.	[7M]
		(OR)	
8.	a)	What are the different normalization layers in deep learning? Illustrate group normalization in detail.	[7M]

Code No : 20CM6T01

b) Why data augmentation is important in image classification? List the [7M] different types of data augmentation techniques. Explain any two techniques in detail.

R20

UNIT-V

- 9. a) Draw the architecture of LSTM and explain its application. [7M]
 - b) Differentiate deep learning and natural language processing. [7M]

(OR)

- 10. a) What is RNN? Draw its architecture and explain the difficulties in [7M] training them.
 - b) With a suitable example explain the process of CBOW word2vec [7M] model.

* * * * *